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Abstract. It is shown that all halving subgroups of a group G which is a weak-direct product 
of two of its subgroups H and K,  can be constructed using halving subgroups of H and K. 
Similarly, if K is of order two, one can find all subgroups of G via the subgroups of H. Using 
the former method, all of the 31 families of magnetic axial point groups of arbitrary order 
are determined. These groups are of interest when ferromagnetic and ferroelectric phases 
of quasi-one-dimensional systems are considered. Also, it is demonstrated that those 
among the non-crystallographic magnetic axial point groups which are compatible with 
ferromagnetism (ferroelectricity), admit magnetisation (polarisation) only along the prin- 
ciple axis of rotation. 

1. Introduction 

Two tasks which are important when properties of the systems whose symmetry is 
described by line groups (polymers, quasi-one-dimensional systems; VujiEiC et a1 1977) 
are considered. These can be performed with the aid of a specific structure of the line 
groups and their isogonal axial point groups. 

The first is the determination of the magnetic line and magnetic axial point groups, 
and arises in the treatment of the ferromagnetic and ferroelectric phases of these 
systems (Zheludev 1971, Cracknelll969). The second task is the prediction of changes 
in structure in phase transitions. In view of some recent approaches to this problem in 
solid state physics (Ascher 1977, Janovec et a1 1975, Kopsky 1979) it emerges that this 
problem reduces to finding subgroups of the isogonal axial point groups (and parti- 
cularly the epikernels of their irreducible representations). 

The s p d i c i t y  of the structure of the line groups and axial point groups is that each 
of them is either cyclic or a weak-direct product (Jansen and Boon 1967) of two of its 
subgroups. In the latter case, one of the subgroups is always cyclic (infinite cyclic for the 
line groups and of order two for the axial point groups), and the second is an axial point 
group in both cases. 

The family of the magnetic groups of a group consists of the group itself, its grey 
group (which is a direct product of the group with 0 = { e ,  e}, the group containing the 
identity e and 6' which is time reversal in the theory of ferromagnetism, or the operation 
of changing the sign of the polarisation vector in the case of ferroelectricity), and the set 
of black and white groups (Opechowski and Guccione 1965). To construct all black and 
white magnetic groups one takes all subgroups of index two of the group and then 
supplements each of them with its coset multiplied by 8. Hence the decisive part of the 
construction consists in finding all index-two subgroups of the group. 
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In this paper we develop a method which enables one to solve the above problems 
for the groups that are weak-direct products. In 2 a theorem concerning the general 
case of the group G being a weak-direct product of its subgroups H and K is proved. The 
consequences of this theorem are exploited to find all halving subgroups of G (in § 3 ) ,  
and all subgroups of G when K is of order two (in § 4). In § 5 the magnetic axial point 
groups are found. Finally (§ 6) the magnetic axial point groups admitting ferro- 
magnetism and ferroelectricity are selected. 

2. The main theorem 

Let the group G be a weak-direct product of two of its subgroups H and K, that is 
G = H K .  This means that each element of G is a product of one element of H and one 
element of K, and that the intersection of H and K contains only the identity element of 
the group G .  Each g E G determines uniquely a pair h E H and k E K such that g = hk, 
and a pair h '  E H  and k '  E K such that g = k'h'.  Semi-direct and direct products are 
special cases of the weak-direct product. 

Now, suppose G' is a subgroup of G = HK.  Let us define the sets H', K', He and K, as 
follows: 

d d 

H ' = { h ' € H I  3 k E K  h 'kEG '} ,  K ' = { k ' E K / 3 h E H  hk 'EG ' i ,  

H , = H n G '  and K , = K n G ' .  
d d 

He and Ke  are subgroups of H and K and subsets of H '  and K '  respectively. Thus the 
subgroup G' consists only of elements g' = h'k' ,  h '  E H' ,  k '  E K'. 

Theorem 1. The set of all k '  E K' such that h ' k '  E G' for any fixed h 'E  H' is a left coset of 
K, in K. Analogously, the set of all h '  E H' such that h 'k '  E G '  for a fixed k '  E K', forms a 
right coset of He in H. 

Proof. Note that the identity element e (regarded as an element of H ' )  occurs in G '  
multiplied by Ke  = {kl = e, k2, . . . , km}. If h '  is an arbitrary element of H ' ,  then there is 
at least one element k 'E  K' such that h ' k ' c  G'. Furthermore, all the elements h 'k 'k i  
( i  = 2, . . . , m )  also belong to G' since K, c G'. Therefore h '  is multiplied at least by the 
left coset of K, whose representative is k'. The assumption that there exists a k "  & k'K,, 
such that h'k'' E G' implies the contradiction that K, contains more than the mentioned 
m elements. 

The following relation is an immediate consequence of the theorem: 

IG'I = IH'IIKeI = IHeIIK'I 
(IS1 denotes the number of elements of a set S) .  

3. Subgroups of index two in a weak-direct product 

In this section the results of theorem 1 will be investigated in detail for the case when G '  
is a subgroup of G of index two. Then one has 

IG'l= / G / / 2  = IHllK//2. (2) 
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Using equations (1) and (2) one can conclude that IH, 1 cannot be less than jH//2, and 
similarly lK,l cannot be less than IK//2. Because of these constraints lHel can take only 
two values: IHI and lHl/2, and analogously IK,/ = IKI or lKel = IK1/2. 

Now we combine these possibilities to count all different index-two subgroups of 
G = HK. 

Case (i). If IH,/ = IH/, lKel must be equal to IK//2, since IH,/ = IH’/ = IH/ implies 
IK’I = IK1/2, by relation (2). Then G’ can be written in the form 

G’ = HK,. ( 3 )  

Case (ii). If lHel = /H1/2, one possibility is lKel = IKI, and the situation is analogous 
to the one in case (i), that is 

G’ = H,K. (4) 

Case (iii) If lHel = /H1/2, the remaining possibility for IK,/ is lKel = IK//2 (with 
IK’I = IKI and IH’I = IHI). By theorem 1, each element of Ho = H\H, is in G’ multiplied by 
the whole coset of K, that is with Ko=K\K,, and mutatis mutandis for KO and Ho. 
Therefore one has 

d 

d 

G’ = H,K, + HOKO. ( 5 )  

Our aim is to find all halving subgroups G‘ of a given G = HK, by making use of 
halving subgroups of H and K. To this end we construct all the sets: (i) HK,, (ii) H,K and 
(iii) H,K, + HYK?, where H, and K, run over the sets of halving subgroups of H and K 
respectively (HP and KP are the corresponding cosets), and we check which of them are 
subgroups. As has already been shown, all G’ are obtained in this way. 

In the first two cases, (i) and (ii), the checking can be done with the aid of the theorem 
that a necessary and sufficient condition for the product of two subgroups to be a group 
is their commutation. As for the case (iii), the situation is a little more complicated. A 
criterion can be formulated as the following theorem: 

Theorem 2. Let H, and K, be halving subgroups of H and K respectively, with cosets HP 
and KY, and G’ = H,K, + HeKy. Further, let H,K, be a subgroup of G = HK (that 
is H,K, = K,H,). Then G’ is a subgroup of G iff HP and KP commute. 

Proof. Suppose the cosets commute. Since HjKi = KiHj and HyKq = KpH?, KyHi has 
empty intersections with HiKi, HPKY and HyKi. This implies KqHj =H,KY. Similarly 
HPK, =KiHy. Now, by checking that g’g-’ E G‘ for each g, g’ E G‘, it can be proved that 
G’ is a group. Suppose now that G‘ is a group. The elements of KPH?, being the inverses 
of elements of HPK?, belong to G’. They cannot be in HjKi, since by assumption 
HiKi = KiHp Hence KPH? must be equal to H?KY. 

Note that this criterion is applicable only when HjKi is a subgroup of G itself, but for 
our purposes this condition will always be fulfilled. 

A remark must be made concerning the special case of the direct product ( G =  
HOK). All subsets (i), (ii) and (iii) are subgroups, because in that case all required 
commutations are satisfied. 

Thus an algorithm for the derivation of all index-two subgroups of G = H K  is 
obtained. 
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4. All subgroups of G = HK when K is of order two 

When K is of order two (K = {e, k}) equation (1) yields the following three possibilities: 
Case ( a ) .  /K‘1= 1 (with /K,I = 1). This implies lHel = IH’i = /G’I and consequently 

G’ = He. (6) 

Case ( b ) .  IK‘J = 2 and JK,I = 2 (with IH,/ = /H‘I = lG’l/2). This yields 

G’ = H,K. (7) 

Case (c). 1K’/= 2 and lK,l= 1 (with /He /  = /G’/ /2  and \H‘/ = IG‘I). Now one has 

G’ = He f H,hk ( h  E H\H,). (8) 

The situation is similar to the one when index-two subgroups of G are searched for. 
It has been proved that all subgroups of G = HK are of the forms (a), (b) or (c), but when 
one tries to obtain all subgroups of G starting with all subgroups H i  of H, then one 
constructs the sets (6), (7) and (8) and one tests which of them are subgroups. 

Subsets (a), i.e. G’ = Hi are always subgroups. In the case (b) the commutation of H i  
and K is a sufficient and necessary condition for G’ to be a group. In case (c) the 
following theorem is applied: 

Theorem 3. A subset G’ = H i  + Hihk (Hi  being a subgroup of H and h E H\Hi)  is a 
subgroup of G = HK (K = {e, k}) iff the following two conditions are simultaneously 
satisfied: (1) hkHi = Hihk and (2) ( h k ) 2  E Hi. 

Proof. Let G’ be a subgroup of G.  Obviously, Hi  is a halving subgroup of G’. This 
implies condition ( 2 )  as well as its being invariant (this is sufficient for the validity of 
(1)). Suppose now that conditions (1) and ( 2 )  are fulfilled. Then the fact that G’ is a 
group follows because g’g-’ E G‘ for each pair g, g‘ E G’. 

Note that cases (b) and (c) can be treated together, if in equation (8) the condition 
h E H\H, is changed to h E H. Equation (7) is obtained from (8) for h E He. 

5. The magnetic axial point groups 

Axial point groups are point groups consisting of the elements that leave an axis 
invariar,t (by definition the z axis). There are seven families of such groups, namely C,, 
S2,,, Cnh, D,, C,,, Dad and Dnh  ( n  = 1, 2 , .  . . ). The groups c, and S2, are cyclic, with 
the generators C, and ( T h C 2 ,  respectively (c,, is a rotation through 2 ~ / n  around the z 
axis and is the reflection in the plane perpendicular to the z axis). The groups of all 
the other families are semi-direct ( A )  or direct products: 

c n h  = c, @Clh, D, = C, A D1, C,,” = c, A Cl”, 
(9) 

where Clh ={e, ah}, CI, = {e, uv}, DI = {e, U }  and D’1= {e, U’} ((+, is the reflection in a 
plane containing the z axis, U rotation through T around an axis orthogonal to the z 
axis, and the prime on U denotes that the angle between the axis of U‘ and the plane of 

DHd = c,,, A Di, Dnh = Cnv@Cih, 
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a, is 1r/2n). 

Note that in 
Among the 
1 , 2 , 3 , 4 , 6 ) ,  

The following groups are physically equivalent: 

the theory of line groups, these groups are distinct (VujiEiC et a1 1977). 
axial point groups there are 27 crystallographic groups: C,, c , h  ( n  = 
c,,, D,, D,,h ( n  = 2,  3 ,  4 , 6 ) ,  S2, ( n  = 1, 2,  3 )  and Dnd ( n  = 2, 3). 

We shall now derive all index-two subgroups of the axial point groups, in order to 
find all the magnetic axial point groups. 

The cyclic group C, has no halving subgroups if n is odd, and if n = 2k there is only a 
cyclic one c k  generated by c k  = C:. Analogously, the group S2,, has exactly one 
index-two subgroup, C,, with the generator C,, = (cq ,c2 , )2 .  In the rest of the families of 
axial point groups, the second factors in (9) are of order two (having the identity element 
as the only element of the halving subgroup). 

The groups c , h  are the direct products C, @Clh and therefore all the sets ( 3 ) ,  (4) and 
( 5 )  are subgroups. In the case (i) a subgroup C, is found. Cases (ii) and (iii) exist only for 
n = 2k ,  when the only halving subgroup of C, is ck. The corresponding subgroups are 

For the groups of the family D, = C, A D l ,  case (i) yields G’ = Ctz. Again, both cases 
(ii) and (iii) exist iff n = 2k.  Equality (4) gives G‘ = Ck A DI = Dk. Using ( 5 )  one finds 
G’ = c k  + ckc2kU, and since CkC2k commutes with U, G’ is a group by theorem 2. One 
should note that c2ku is a rotation through IT about an axis obtained from that of U by 
a rotation through 1~/2r1 about the z axis, and consequently the last G’ is again Dk. 
Hence if n is odd the only halving subgroup of D, is C, ; for n = 2k ,  there is an additional 
halving subgroup Dk. 

A quite analogous procedure in the case of the family C,,, gives C, as a halving 
subgroup for each n, and especially for n = 2 k  there is an additional index two subgroup 

As for the family Dnd = C,, A D;,  ( 3 )  yields G’ = C,,. Since C,, has two subgroups,of 
index two, C, and c k ,  (the last one for n = 2 k ) ,  two sets of type (ii) can be formed. The 
first of these is G’ = C, A D ;  = D, (the axis of the rotation U in D, is just the same as in 
Dad) and the second one is G’ = Ck,D;. Since the element U‘a, E D;Ck, is equal to 
CnuvU’, which is not in Ck,D:, one concludes that ck, and D i  do not commute. 
Therefore G’ is not a subgroup in the latter case. Similarly, there are two possibilities 
(iii). The first is G‘ = C, +C,a,U’ (commutativity of Cnav with U’ follows from the 
relation U’a, = CnavU’), and because of a,U’ = Ciig,,, one has G’ = S2,. The second 
one is G‘ = c k , +  CkvClkU‘, and it is not a subgroup since the relation U’UvcZk = 
c k ( + v U ’  with c k a , &  Ck,CZk implies noncommutativity of the cosets. 

The groups of the remaining family Dnh are direct products of C,,, with Clh. Case (i) 
gives G’ = CnV, Again, there are two sets of type (ii): G‘ = C, @Clh = c , h  and for n = 2k ,  
G’ = Ckv@Clh = Dkh.  Similarly, the subgroups belonging to case (iii) are G’ = 

G’ Ck @Clh = Ckh and G’ = Ck + CkC2kah = S2k. 

Ckv. 

c, f Cn(T,(Th = D, (note that U V U h  = U ) ,  and for I z  = 2k ,  G’ = Ckv+ CkvC2kUh = 
Ck,+ck,U’= Dkd. 

We have now found all the halving subgroups of the axial point groups. To derive 
the black and white axial point groups one has to add to these subgroups their cosets 
multiplied by 8 (in the Schonflies notation this is denoted by giving the group and its 
halving subgroups in brackets). The results are summarised in table 1, in which the grey 
groups are given, as well as the ordinary axial point groups. In the table, the 
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Table 1. The magnetic axial point groups: The groups are given in both Schonflies and 
international notations. Each family of the magnetic groups begins with an ordinary axial 
group, the black and white groups follow, and the grey group is given last. 

Schonflies International 

n even ( 2 k )  n arbitrary n even ti odd 

1 
2 
3 

4 
5 
6 

7 
8 
9 

10 
11  

12 
13 
14  
15 

16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 
30 
31 

D, 0 0  

n 22 
n 2'2' 
n'22' 
n221' 

nmm 
nm'm' 
n 'mm'  
nmm 1' 

(&)2m 
(&)2'm' 
(24'2" 
( 2 4 ' 2 ' m  
(2n)2m 1' 

- 

n l m m m  
n l m m ' m '  
n l m ' m ' m '  
n l m ' m m  
n ' l m ' m ' m  
n ' l m m m '  
n l m m m  1' 

n 

tl 1' 

5 
t i l  

fil' 

- 
( 2 n ) l '  

n2 
n 2' 

n21' 

nm 
nm'  

nm 1' 

tim 
t im' 
ti"' 
ti" 
fim 1' 

(&)2m 
(&) 2" ' 
(&)'2m' 
(2n) '2 'm 

- 

- 
(2n)2m 1' 

international notation is used together with that of Schonflies (Bradley and Cracknell 
1972). 

Besides the 7 families of axial point groups, 7 families of grey and 17 of black and 
white axial point groups have been obtained. Among them there are 27 crystallo- 
graphic axial point groups which have already been listed, their 27 grey and 52 
associated black and white groups (note that by (10) one has D2(D1)=D2(C2),  
DZh(Dlh) = D2h(C2v) and DZh(Dld) = D2h(C2h)), and these results are known (e.g. 
Bradley and Cracknell 1972). 
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6. Magnetic axial point groups admitting ferromagnetism and ferroelectricity 

To determine whether a system with a symmetry of a given magnetic axial point group 
M can be ferromagnetic or ferroelectric, we use the following procedure. If a system is 
ferromagnetic (ferroelectric) there must be at least one component of the magnetisation 
(polarisation) vector which is invariant under all transformations of M, that is, trans- 
forms according to the identical representation of M. 

The magnetisation (polarisation) vector transforms according to the vector 
representation D"' of the rotational group SO(3) and, being an axial (polar) vector, 
according to the representation Dill+ [D"'-] of the full rotation-reflection group 
O(3) = S0(3)0{e ,  I }  ( I  is the spatial inversion). Furthermore, it changes sign under the 
operation 8, and thus belongs to the representation D'l)+- [D"'--] of O(3)OO.  

Each magnetic point group is a subgroup of the group O(3)OO.  The representation 
of M according to which the magnetisation (polarisation) is transformed is the subduced 
representation D i 1 " ~ ( 0 ( 3 ) 0 0 ) ~ M  [Di"--(0(3)C30)~M] of O(3 )OO onto M. 
Therefore, if M admits spontaneous magnetisation (polarisation) then this subduced 
representation is reducible and at least one of its irreducible components is the identical 
representation of M. The corresponding vector, carrying the identical representation, 

Table 2. The magnetic axial point groups which are compatible with a ferromagnetic phase 
of the system: For each of these groups (left-hand column) the admissible directions of the 
magnetisation vector are given (right-hand column). 

S Z n  n = l  x ,  Y ,  2 

n = 2 , 3 ,  . . .  z 
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Table 3. The magnetic axial point groups which are compatible with a ferroelectricphase of 
the system: For each of these groups (left hand column) the admissible directions of the 
polarisation vector are given (right hand column). 

is just the invariant component of magnetisation (polarisation). It can be determined 
using the group projectors (Lyubarsky 1960) or directly by inspection. 

Groups that admit ferromagnetism, together with the possible directions of the 
magnetisation vector, are given in table 2, and in table 3 the analogous results for 
ferroelectricity are presented. 

7. Conclusions 

When the symmetry group of a considered system is a weak-direct product of two of its 
subgroups, one can use this property to find its halving subgroups and consequently the 
whole family of the corresponding magnetic groups. It turns out that the axial point 
groups and line groups are of this structure, and in this paper all the magnetic axial point 
groups are derived. 

Among the 31 families of magnetic axial point groups (17 of them are black and 
white) those which admit ferromagnetism and ferroelectricity are emphasised. It has 
been shown that spontaneous magnetisation and polarisation of a system with the 
symmetry of a non-crystallographic magnetic axial point group has always the direction 
of the principal axis of rotation. 
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Subgroups of any index of the axial point groups as well as the magnetic line groups 
have been already found by the method described in this work, and the results will be 
reported in a forthcoming paper. Work on the matrix-antimatrix representations of 
these magnetic groups (Herbut er a1 1980) is in progress. 
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